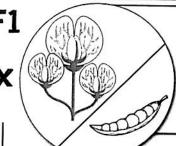
Men	del	's c	th	or	121.
	-	3 L			- NA

Mendel took true breeding strains with two different traits each (P cross) :

White Flowers/Round Peas (ff RR) X (FF rr) Purple Flowers/Wrinkled Peas

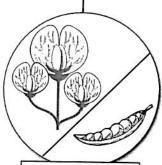
All their FI offspring had _____ and ____ and ____


Then, he crossed two of the FI offspring

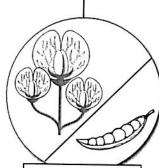
Phenotype:

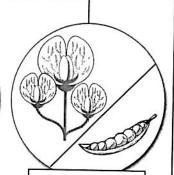
Genotype:


F1


Phenotype:

Genotype:


F2


Purple Flowers Round Peas

Purple Flowers Wrinkled Peas

White Flowers Round Peas

White Flowers Wrinkled Peas

Ø Bethany

To fill in the fraction of offspring for each genotype, fill in the large Punnett square on the next page.

Law of Independent Assortment

Mendel found that each of the alleles were Inherited _____. Inheriting a round pea allele did not mean also inheriting a white flower allele.

Things Mendel didn't know:

All the traits he was studying were genes, on separate chromosomes in the pea plant.

Name:

Law of Independent Assort

Which traits/alleles are dominant? Which traits/alleles are recessive?	Parent #1: X Parent #2: Phenotype:					
How to figure out the gametes: Write every combination with an allele from each gene.	Genotype:					
3						
	4					
5 The Genotype Ratio: Ratio is rarely Used in Dibybrid						
used in Dihybrid Problems.	: : :					

Example: Dihybrid Cross

A scientist crosses two pea plants that are heterozygous for plant height and flower color. Tall is dominant over short and purple is	Allele Notation Key: T = tall t = short	P = purple	p = white
dominant over white. The plant height and flower color genes are unlinked. Complete the information below and the Punnett square. Then answer the questions below.	7. Punnett Square:	tall purple plant's gar	flower netes
X	ower etes		
tall, purple flowered pea plant pea plant pea plant	dux ths 6	+	
I. Phenotype: 4. Phenotype:	<u>la fa</u>		
2. Genotype: 5. Genotype:			
3. Gametes: 6. Gametes:			
8. What is the phenotype ratio of their progeny? _			
9. What fraction of the offspring plants will be sho	rt and have purple flowers	?	

There is another way we can answer question #9 above: Probability!

There's another way to get the right answer to question 9: use probability!
10. Just think about the plant height gene right now. When two heterozygous tall plants are crossed, what fraction of their offspring are short?
II. Now only consider the flower color gene. When two heterozygous purple plants are crossed, what fraction of their offspring have purple flowers?
12. To find the fraction of offspring that have BOTH purple flowers and short height, multiple your answers from #10 and #11.
Your answer to #12 should match your answer to #9. You now know an easier way to solve dihybrid problems without filling out a giant square.