Messenger RNA (mRNA)	mRNA carries the code for building a The *reads* the code and builds the The protein buildling code is a triplet code; every			
The start of the instructions is called the The start codon's code is	nucleotides codes for one Three bases that code for an amino acid are together called a			
It codes for an amino acid called	When the ribosome reaches a codon, it stops translating and building the There are 3: UAA, UGA, UAG.			
Start Codon Other	Stop codons do not code for an			
GUCAUGCCUCGU 5'	UCGCCAUAACCGCAAAAAAAAAAAAAAAAAAAAAAAAAA			
Amino acid • The *top* of the tRNA attaches a specific • Different connect to different	• The "bottom" of the tRNA has three nucleotides that form the, a three base triplet			
tRNA is the molecule that helps connect the to the right during translation.	that can basepair with a specific on the			
Transfer RNA (tRNA)	Name:			
(Along the sides of the tRNA, the nucleotides, but they aren't show a Bethany Lau	ere are also RNA			

Ribosome		P A site	_	
• The ribosome is the molecular machine that but		E		
The ribosome is made up of		E site		
and	_			
• It has two subunits: one and one				
• It has three sites:,,		\sim 3 \sim \rangle		
andsites.				
		O Befly r	au	
		ation: First Step		
(Met)		ribosome's subunits come		
		gether at theof the mRNA.		
		loves along the until the		
[/ ZF \	reaches a start codon:			
	• A TRI	NA with a complementary	- 1	
		enters the A site.	ر	
GUCAUGCCUCGUUCGC	CALL	A A C C G C [A A A A A A A A A A A A A A A A A A		
5 thillinum	ũ	hhh 3'		
Elonga	tion:	Second "Step" or Process		
		A moves to the		
1\ - \		a complementary		
		on enters the	-	
	forms between			
the amin	o acid	at the and the	-	
amino ac	id at th	ne	-	
			ر	
GUCAUGCCUGUUCGCCAU.	AACC	CGCAAAAAAAAA		
5 thitting the same	2	3'		
Where does Translation take place?				
• In, translation takes place in	the			
where ribosomes are. In, translation can take place.	, _{c+}	Name:		
the same time and place as, nec	52 -0 00	=		
the DNA, because there is no		1		
,	<u> </u>		ы	

Elongation continued:	The tRNA with the two amino acids attached moves from the to the The Creat tRNA that were in the Desite account to 5 at the Desite account.				
JAC VIAC	et Pro (Arg)	In the P site moves to the E site and A tRNA that is complementary to the third codon enters the A forms between the amino acids attached to the tRNAs in the A and P sites. This process continues until the stop codon enters the			
GUCAU 5 WW	GGAGCA GCCUCGUUCGCCAI	UAACCGC <u>AAA</u> VVVVV 3'	AAAAAA		
	O Arg Ser Pro	GEGCAAAAA 3'	Termination: Las • When a reaches the A site, to ribosome translating. • The ribosome's separate and the separates from the that has formula that	the	
Stop Codon What happens next?					
• The • The • The • The	can be re-used by the recan be re-used by the recan also be re-use can also be re-use more moves into the moves and sorting.	d and start transla matching amino ac	ilds.	O ROELANY I JULE	